
A New MPI Implementation for Cray SHMEM

Ron Brightwell

Scalable Computing Systems
Sandia National Laboratories

�

P.O. Box 5800
Albuquerque, NM 87185-1110

rbbrigh@sandia.gov

Abstract. Previous implementations of MPICH using the Cray SHMEM inter-
face existed for the Cray T3 series of machines, but these implementations were
abandoned after the T3 series was discontinued. However, support for the Cray
SHMEM programming interface has continued on other platforms, including
commodity clusters built using the Quadrics QsNet network. In this paper, we
describe a design for MPI that overcomes some of the limitations of the previous
implementations. We compare the performance of the SHMEM MPI implemen-
tation with the native implementation for Quadrics QsNet. Results show that our
implementation is faster for certain message sizes for some micro-benchmarks.

1 Introduction

The Cray SHMEM [1] network programming interface provides very efficient remote
memory read and write semantics that can be used to implement MPI. Previously, the
SHMEM interface was only available on the Cray T3D and T3E machines and imple-
mentations of MPICH using SHMEM were developed specifically for those two plat-
forms [2, 3]. Recently, SHMEM has been supported on other platforms as well, includ-
ing machines from SGI, Inc., Cray, Inc., and clusters interconnected with the Quadrics
network [4].

This paper describes our motivation for this work and presents a design that over-
comes some of the limitations of these previous implementations. We compare the
performance of the SHMEM MPI implementation with the native implementation for
Quadrics QsNet. Micro-benchmark results show that the latency performance of the
SHMEM implementation is faster for a range of small messages, while the bandwidth
performance is comparable for a range of large messages.

The rest of this paper is organized as follows. The next section describes how this
work relates to other published research. Section 3 discusses the motivations for this
work. The design of our MPI implementation is presented in Section 4, which is fol-
lowed by performance results and analysis in Section 5. Section 6 outlines possible
future work.

�

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Com-
pany, for the United States Department of Energy’s National Nuclear Security Administration
under contract DE-AC04-94AL85000.

2 Related Work

The design and implementation of MPICH for SHMEM described in this paper is a con-
tinuation of previous work for the Cray T3D [2], which was subsequently ported to the
Cray T3E [3]. This new implementation is less complex than the previous implementa-
tions, due to some extended features that are provided in the Quadrics implementation
of SHMEM. In particular, the T3 machines did not support arbitrarily aligned transfers
and required explicit cache-management routines to be used. The SHMEM implemen-
tation for Quadrics provides the ability to transfer data without any alignment or length
restriction, and the PCI-based network eliminates the need to explicitly manage the data
cache.

Recently, some of the techniques that were employed in these earlier MPI/SHMEM
implementations have been used to support MPI implementations for InfiniBand. For
example, the method of using a fixed set of buffers at known locations for handling in-
coming messages, which has been referred to as persistent buffer association, has been
used in the MVAPICH implementation [5]. The similarities in the SHMEM interface
and the remote DMA (RDMA) operations provided by the VAPI interface are largely
what motivated this updated MPI/SHMEM implementation. We discuss more details
and further motivations in the next section.

3 Motivation

The native Quadrics implementation of MPI uses the Tports interface to offload all MPI
matching and queue traversal functionality to the network interface processor. In most
cases, this is an ideal approach. However, there are some cases where matching and
queue traversal can be more efficiently handled by the host processor, as is done in the
SHMEM implementation. We have used this implementation along with the Tports
implementation for extensive comparisons that quantify the benefits of independent
progress, overlap, and offload for applications [6–8], using an identical hardware en-
vironment.

The MPI/SHMEM implementation also has some features that are not provided
by the MPI/Tports implementation. For example, data transfers are explicitly acknowl-
edged in the MPI/SHMEM implementation, while they are not for the MPI/Tports im-
plementation. This approach may be beneficial for applications where load imbalance
causes messages to be produced faster than they can be consumed. The Tports interface
handles buffering of unexpected messages implicitly, so unexpected messages that ar-
rive from the network are deposited into buffers that are allocated and managed within
the Tports library. This space never really becomes exhausted, as the Tports library will
keep allocating more memory, relying on virtual memory support to provide more. In
some cases, a protocol that throttles the sender is more appropriate. The MPI/SHMEM
implementation provides this throttling since the buffers used for MPI messages are
explicitly managed by both the sender and the receiver.

Finally, the SHMEM interface has capabilities that are very similar to those pro-
vided by the current generation of networking technology that supports RDMA opera-
tions, such as InfiniBand. The distributed shared memory model of SHMEM avoids the

need for the initiator and the target of a put or get operation to explicitly exchange in-
formation in order to begin a transfer, but the semantics of the transfer and mechanisms
used to recognize the completion of transfers are very similar. This is especially true for
some of the MPI implementations for InfiniBand that use RDMA operations [5, 9, 10].
We intend to use the SHMEM interface to analyze characteristics, such as strategies
for efficiently polling for incoming messages, that may be beneficial to RDMA-based
implementations of MPI.

4 Design and Implementation

4.1 Basic Data Transfer Mechanism

Here we describe our basic scheme for message passing using the SHMEM remote
memory write (put) and remote memory read (get) operations. A point-to-point transfer
between two processes can be thought of as a channel. The sender fills in the MPI
envelope information and data in a packet and uses the remote write operation to transfer
this packet to the receiver. On the receive side, the receiver recognizes the appearance
of a packet and handles it appropriately.

Figure 1 illustrates the contents of a packet. The largest area of a packet is for user
data. For our Quadrics implementation, the size of the data field in a packet was 16 KB.
Following the data is the MPI envelope information: the context id of the sending MPI
communicator, MPI tag, and the length of the message. We also include the local source
rank within the communicator as an optimization to avoid a table lookup at the receiver.
In addition to this information, a packet also includes two fields, Send Start and Send
Complete that are used for the long message and synchronous message protocols. We
will describe their use below in Section 4.2. Finally, the last field in the packet header
is the status field, which is used to signal the arrival and validity of a packet.

Status

Send Start

Send Complete

Source Rank

Length

Tag

Context Id

Data

Fig. 1. Packet Structure

There are a few important distinctions about the way in which a packet is con-
structed. First, the status field must be the last field in the packet, since it signifies the
arrival and validity of a packet. Fixing the location of the status within the structure
avoids having to use more complex techniques, such as those described in [5], to de-
cipher when a complete packet has arrived. The receiver must only poll on a single
memory location to determine packet arrival.

There are two possible strategies for sending a packet. First, two individual put op-
erations could be used. The first put would be used to transfer the user data portion of a
packet, and the second put would transfer the MPI envelope information. However, this
essentially doubles the network latency performance of a single MPI send operation.
For implementations of SHMEM where there is no ordering guarantee for successive
put operations, an additional call to a synchronization function, such as shmem fence
may be needed to insure that the second put operation completes after the first. The
second strategy copies the user data into a contiguous packet and uses a single put op-
eration to transfer both the data and the MPI envelope. This is the strategy that we have
used in our implementation. Since the length of the data portion of a packet is variable,
the data is copied into a packet at an offset from the end of the buffer rather than from
the beginning. This means that the start of a packet varies with the size of the data, but
the end of the packet is always fixed. This way, a packet can be transmitted using a
single put operation.

Since the target of a put operation must be known in advance, it is easiest to allo-
cate send packets and receive packets that are symmetric, or mapped to the same virtual
address location in each process. Our current implementation does this by using arrays
that are statically declared such that there are N packets for sending messages to each
rank and N corresponding receive packets for each rank. Packets for each rank are man-
aged in a ring, and a counter is maintained for each send and receive packet for each
rank to indicate the location of the next free packet.

In order for rank 0 to send a packet to rank 1, rank 0 checks the status field of the
current send packet. If the status is set, this indicates that the corresponding receive
packet at the destination has not yet been processed. At this point, the sender looks
for incoming messages to process while waiting for the status to be cleared. When
the status is cleared, the sender fills in the MPI envelope information, copies the data
into the packet, sets the status field, and uses a put operation to write the packet to the
corresponding receive packet at the destination. The sender then increments the counter
to the next send packet for rank 1.

To receive a packet, rank 0 checks the status flag of the current receive packets for
all ranks by looping through the receive packets array. Eventually, it recognizes that
rank 0 has written a new packet into its current receive packet slot. It examines the
contents of the MPI envelope and determines if this message is expected or unexpected
and whether it is a short or long message. Once processing of this packet is complete,
it clears the local status flag of the receive packet that was just processed, uses a put
operation to clear the status flag of the send packet at the sender, and increments the
current location of the receive packet for rank 0.

4.2 Protocols

Our implementation employs a traditional two-level protocol to optimize latency for
short messages and bandwidth for long messages. Short messages consist of a single
packet. Once the packet is sent, a short message is complete. For long messages, the
data portion of a packet is not used. The MPI envelope information is filled in, the
Send Start portion of the packet is set to the location of the buffer to be sent, and the
Send Complete field is set to the location of the completion flag inside the MPI send

request handle. When the packet is received and a matching receive has been posted,
the receiver uses a remote read operation to read the send buffer. Once the get operation
is complete, it uses a remote write operation to set the value of the completion flag in
the send handle to notify the sender that the transfer has finished. The Send Complete
field is also used to implement an acknowledgment for short synchronous send mode
transfers.

4.3 Unexpected Messages

When a packet is received, the posted receive queue is checked for a match. If no match
is found, a receive handle is allocated and the contents of the packet are copied to the
handle. If the message is short, a temporary buffer is allocated and the data portion of
the packet is copied into it. Once a matching receive is posted, the contents of this buffer
are copied into the user buffer and the temporary buffer is freed.

This implementation is very similar to the implementation for the T3E, with a few
optimizations. First, the T3E implementation used only one send packet and one receive
packet for each destination. We’ve enhanced this using a ring of packets to allow for
several outstanding transfers between a pair of nodes. The T3D implementation used
two put operations for each send – one for the MPI envelope information and one for the
data. Because of the low latency of the put operation, copying the user data into a packet
incurred more overhead than sending the data using a separate remote write operation.
However, since the T3E supported adaptive routing, successive remote writes were not
guaranteed to arrive in the order they were initiated. As such, the T3E implementation
used a memory copy and a single remote write operation, as does our implementation
for Quadrics.

4.4 Limitations

While this implementation demonstrates good performance for micro-benchmarks, it
does have some drawbacks that may impact scalability, performance, and usability.
Since send and receive packets are allocated using host memory, the amount of memory
required scales linearly with the number of processes in the job. If we have 8 buffers
each of size 16 KB, each rank requires 128 KB of memory. For a 1024 process job, this
amounts to 128 MB of memory just for the packets alone. The current implementation
does not allocate this memory dynamically, mostly because the Quadrics implemen-
tation does not support the Cray shmalloc function for obtaining symmetric memory
from a heap1 The current library is compiled to support a maximum of 128 processes,
so a significant amount of memory is wasted for jobs with fewer processes.

In addition to memory usage, the time required to look for incoming packets in-
creases with the number of processes as well. Polling memory locations is not a very ef-
ficient way to recognize incoming transfers. We plan to explore several different strate-
gies for polling and analyze their impact on performance. This limitation is of particular
interest because it is also an issue for implementations of MPI for InfiniBand.

1 There is an equivalent function call in the lower-level Elan libraries that could be used.

The rendezvous strategy that we employ for long messages does not support in-
dependent progress, so the opportunity for significantly overlapping computation and
communication for large transfers is lost. Our implementation could be enhanced by
using a user-level thread to insure that outstanding communication operations make
progress independent of the application making MPI library calls.

Our implementation also does not use the non-blocking versions of the put and
get operations. While these calls are listed the Quadrics documentation, they are not
supported on any of the platforms to which we have access.

Finally, our implementation only supports the SPMD model of parallel program-
ming. This is a limitation imposed by the SHMEM model that does not allow using
different executables files in the same MPI job.

5 Performance

5.1 Platform

The machine used for our experiments is a 32-node cluster at Los Alamos National
Laboratory. Each node in the cluster contains two 1 GHz Intel Itanium-2 processors,
2 GB of main memory, and two Quadrics QsNet (ELAN-3) network interface cards.
The nodes were running a patched version of the Linux 2.4.21 kernel. We used version
1.24-27 of the QsNet MPI implementation and version 1.4.12-1 of the QsNet libraries
that contained the Cray SHMEM compatibility library. The SHMEM MPI library is a
port of MPICH version 1.2.5. All applications were compiled using Version 7.1 Build
20031106 of the Intel compiler suite. All of our experiments were run using only one
process per node using only one network interface, and all results were gathered on a
dedicated machine.

5.2 Results

Figure 2 shows the latency performance for the MPI/SHMEM implementation and the
vendor-supplied MPI/Tports implementation. The zero-length latency is 5.6 µsecfor
MPI/Tports and 6.6 µsecfor MPI/SHMEM. At 256 bytes, the SHMEM implementa-
tion begins to outperform the Tports implementation. This trend continues until the size
of the message is 4 KB.

Figure 3 shows the bandwidth performance of the two implementations. From 10
KB to 200 KB, there is a difference of a little more than 20 MB/s in favor of the Tports
implementation. This difference is largely attributable to the ability of the Tports im-
plementation to avoid involving the host processor in large data transfers. In contrast,
the SHMEM implementation must rely on the application process to initiate a remote
memory read operation. At a message size of 100 KB, the margin between the two im-
plementations has decreased to less than 1 MB/s, and only a minimal difference can be
perceived for messages beyond that point.

Figure 4 illustrates how the posted receive queue can affect latency performance.
For this measurement, there are 10 requests in the posted receive queue, and the per-
centage of the queue that must be traversed in order to receive a zero-length message

 5

 10

 15

 20

 25

 30

 35

 0 500 1000 1500 2000 2500 3000 3500 4000

La
te

nc
y

(m
ic

ro
se

co
nd

s)

Message Size (bytes)

MPI/Tports - Elan3
MPI/SHMEM - Elan3

Fig. 2. Message latency for MPI/SHMEM and MPI/Tports

 120

 130

 140

 150

 160

 170

 180

 190

10KB 20KB 50KB 100KB 150KB 200KB

B
an

dw
id

th
 (M

B
/s

)

Message Size (bytes)

MPI/Tports - Elan3
MPI/SHMEM - Elan3

 177.5

 178

 178.5

 179

 179.5

 180

 180.5

 181

 181.5

 182

 182.5

 183

100KB 250KB 500KB 1MB 2MB

B
an

dw
id

th
 (M

B
/s

)

Message Size (bytes)

MPI/Tports - Elan3
MPI/SHMEM - Elan3

(a) (b)

Fig. 3. Medium (a) and Long (b) Message bandwidth for MPI/SHMEM and MPI/Tports

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

 0 20 40 60 80 100

La
te

nc
y

(m
ic

ro
se

co
nd

s)

Percent Traversed

MPI/TPorts
MPI/SHMEM

Fig. 4. Pre-posted message latency for MPI/SHMEM and MPI/Tports

is varied. The latency of the SHMEM implementation is less than the Tports imple-
mentation at 8 pre-posted receives. At this point, using the host processor rather than
the network interface processor to perform MPI communicator and tag matching oper-
ations becomes more efficient.

6 Future Work

One of the important areas we intend to pursue with this work is the effect of mem-
ory polling strategies on application performance. For applications that have relatively
few sources of incoming messages, we expect to be able to develop strategies that al-
low incoming messages to be discovered more quickly than simply polling all possi-
ble incoming message locations. We also intend to explore these strategies for other
RDMA-based implementations of MPI, including InfiniBand.

There is much work that could be done to improve the performance of our MPI/SHMEM
implementation. Collective operations are currently layered on top of MPI point-to-
point functions, so work could be done to leverage the SHMEM collective routines
that are available. SHMEM also has efficient support for non-contiguous transfers, so
there might be some benefit for using these functions to handle non-contiguous MPI
data types. Additionally, there may be some benefit for using the SHMEM interface
for implementing the MPI-2 one-sided operations, since both two-sided and one-sided
operations could be handled by the same transport interface.

References

1. Cray Research, Inc.: SHMEM Technical Note for C, SG-2516 2.3. (1994)
2. Brightwell, R., Skjellum, A.: MPICH on the T3D: A case study of high performance message

passing. In: Proceedings of the Second MPI Developers’ and Users’ Conference. (1996)
3. Hebert, L.S., Seefeld, W.G., Skjellum, A.: MPICH on the Cray T3E. In: Proceedings of the

Third MPI Developers’ and Users’ Conference. (1999)
4. Petrini, F., chun Feng, W., Hoisie, A., Coll, S., Frachtenberg, E.: The Quadrics network:

High-performance clustering technology. IEEE Micro 22 (2002) 46–57
5. Liu, J., Wu, J., Kini, S.P., Wyckoff, P., Panda, D.K.: High performance RDMA-based MPI

implementation over InfiniBand. In: Proceedings of the 2003 International Conference on
Supercomputing (ICS-03), New York, ACM Press (2003) 295–304

6. Brightwell, R., Underwood, K.D.: An analysis of the impact of overlap and independent
progress for MPI. In: Proceedings of the 2004 International Conference on Supercomputing,
St. Malo, France (2004)

7. Brightwell, R., Underwood, K.D.: An analysis of the impact of MPI overlap and independent
progress. In: 2004 International Conference on Supercomputing. (2004)

8. Underwood, K.D., Brightwell, R.: The impact of MPI queue usage on latency. In: Proceed-
ings of the 2004 International Conference on Parallel Processing. (2004)

9. Liu, J., Jiang, W., Wyckoff, P., Panda, D.K., Ashton, D., Buntinas, D., Gropp, W., Toonen,
B.: Design and implementation of MPICH2 over InfiniBand with RDMA support. In: Pro-
ceedings of the 2004 International Parallel and Distributed Processing Symposium. (2004)

10. Rehm, W., Grabner, R., Mietke, F., Mehlan, T., Siebert, C.: An MPICH2 channel device
implementation over VAPI on InfiniBand. In: Proceedings of the 2004 Workshop on Com-
munication Architecture for Clusters. (2004)

